The Asymmetric Binding of PGC-1α to the ERRα and ERRγ Nuclear Receptor Homodimers Involves a Similar Recognition Mechanism
نویسندگان
چکیده
BACKGROUND PGC-1α is a crucial regulator of cellular metabolism and energy homeostasis that functionally acts together with the estrogen-related receptors (ERRα and ERRγ) in the regulation of mitochondrial and metabolic gene networks. Dimerization of the ERRs is a pre-requisite for interactions with PGC-1α and other coactivators, eventually leading to transactivation. It was suggested recently (Devarakonda et al) that PGC-1α binds in a strikingly different manner to ERRγ ligand-binding domains (LBDs) compared to its mode of binding to ERRα and other nuclear receptors (NRs), where it interacts directly with the two ERRγ homodimer subunits. METHODS/PRINCIPAL FINDINGS Here, we show that PGC-1α receptor interacting domain (RID) binds in an almost identical manner to ERRα and ERRγ homodimers. Microscale thermophoresis demonstrated that the interactions between PGC-1α RID and ERR LBDs involve a single receptor subunit through high-affinity, ERR-specific L3 and low-affinity L2 interactions. NMR studies further defined the limits of PGC-1α RID that interacts with ERRs. Consistent with these findings, the solution structures of PGC-1α/ERRα LBDs and PGC-1α/ERRγ LBDs complexes share an identical architecture with an asymmetric binding of PGC-1α to homodimeric ERR. CONCLUSIONS/SIGNIFICANCE These studies provide the molecular determinants for the specificity of interactions between PGC-1α and the ERRs, whereby negative cooperativity prevails in the binding of the coactivators to these receptors. Our work indicates that allosteric regulation may be a general mechanism controlling the binding of the coactivators to homodimers.
منابع مشابه
PGC-1α induces dynamic protein interactions on the ERRα gene multi-hormone response element nucleosome in kidney cells
ERR (oestrogen-related receptor)-α modulates the oestrogen signalling pathway and regulates genes participating in the physiological energy balance programme. Oestrogen and PGC-1α (peroxisome proliferator-activated receptor-γ coactivator-1α), the master regulator of the energy homoeostasis programme, both regulate the expression of ERRα through the MHRE (multihormone response element) of the ER...
متن کاملFasting Induces the Expression of PGC-1α and ERR Isoforms in the Outer Stripe of the Outer Medulla (OSOM) of the Mouse Kidney
BACKGROUND Peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) is a member of the transcriptional coactivator family that plays a central role in the regulation of cellular energy metabolism under various physiological stimuli. During fasting, PGC-1α is induced in the liver and together with estrogen-related receptor a and γ (ERRα and ERRγ, orphan nuclear receptors with no kno...
متن کاملEstrogen-related receptor gamma promotes mesenchymal-to-epithelial transition and suppresses breast tumor growth.
Estrogen-related receptors (ERR), ERR alpha (ERRα) and ERR gamma (ERRγ), are orphan nuclear receptors implicated in breast cancer that function similarly in the regulation of oxidative metabolism genes. Paradoxically, in clinical studies, high levels of ERRα are associated with poor outcomes whereas high levels of ERRγ are associated with a favorable course. Recent studies suggest that ERRα may...
متن کاملTranscriptional regulation of temperature-induced remodeling of muscle bioenergetics in goldfish.
Central to mammalian mitochondrial biogenesis is the transcriptional master regulator peroxisome proliferator-activated receptor (PPAR)-γ coactivator-1α (PGC-1α), and a network of DNA-binding proteins it coactivates. We explored the role of this pathway in muscle mitochondrial biogenesis in response to thermal acclimation in goldfish (Carassius auratus). We investigated the transcriptional resp...
متن کاملThe Effects of Pyruvate Dehydrogenase Kinase 4 (PDK4) Inhibition on Metabolic Flexibility during Endurance Training in Skeletal Muscles of Streptozotocin-induced Diabetic Rats
Background:Metabolic flexibility is the capacity of a system to adjust fuel (primarily glucose and fatty acids) oxidation based on nutrient availability. Pyruvate Dehydrogenase Kinase 4 (PDK4) is one of the main enzymes that play a critical role in metabolic flexibility. In current study, we examined PDK4 inhibition along with exercise training (ET) on the gene expression of Es...
متن کامل